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1 Introduction

This writeup is a follow-on to my earlier writeup, �Derivation of The Bayes
and Kalman Filters� ([2]). As with that one, the purpose of this writeup is to
provide mathematical details for topics covered in the textbook �Probabilistic
Robotics� by Sebastian Thrun, Wolfram Burgard, and Dieter Fox [1], speci�cally
in Chapter 3.3.

The Extended Kalman Filter (EKF) is, as the name implies, an extension of
the original, linear Kalman �lter to cases where the state transition equation or
sensor model equation is non-linear, so that the Kalman �lter can't be applied.

The Kalman �lter is the Bayes �lter that is derived when the following
assumptions are made:

1. The prior f(x0) is a multivariate Gaussian in the state vector x0;

2. For each time step, the state transition equation must be linear in its
arguments xt−1 and ut, with additive mean-zero Gaussian noise εt:

xt = Atxt−1 +Btuu + εt (1)

3. For each time step, the sensor equation must be linear in its argument xt
with additive mean-zero Gaussian noise δt :

zt = Ctxt + δt. (2)

At, Bt, Ct are all linear (matrices), and their values (as well as the parameters
of the noise vectors εt and δt) can vary with each time step. These conditions
ensure that the beliefs bel(xt) = f(xt|z1:T , u1:T ) are multivariate Gaussian dis-
tributions at every time step t.

For most real-world systems, conditions 1 and 2 of the Kalman �lter model
are violated; neither the motion model nor the sensor model are linear in their
arguments. As a result, the predicted and corrected beliefs bel(xt) and bel(xt)
are usually not Gaussian, because applying a non-linear function to a Gaussian
random variable does not necessarily result in a Gaussian random variable.

The EKF is obtained by replacing, at each step of the algorithm, the nonlin-
ear motion model and sensor model functions with their linear approximations.
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Since the motion model and sensor model functions are linearized at each point,
the requirements for the original Kalman �lter are met; therefore, all the pos-
terior beliefs remain Gaussian.

This makes the EKF ill-suited for problems in which the true posterior prob-
abilities are not well represented by Gaussians. For example, multimodal beliefs
occur frequently in robotics problems and are completely unrepresentable with
single Gaussians. The EKF is only suited for problems in which the bulk of
the prior belief bel(xt) lies in a near-linear portion of the nonlinear function
g(ut, xt−1), and the bulk of bel(xt) lies in a near-linear portion of h(xt); in
particular, it can't represent multimodal beliefs at all, and other methods have
been invented to handle that case. The EKF is, essentially, a �rst step into the
domain of nonlinear transition and sensor model functions in Bayesian �ltering.

2 The EKF prediction and update steps

The goal of the Bayes �lter algorithm is to calculate the 'belief' distribution at
time T , bel(xT ) = f(xT |z1:T , u1:T ). This is the p.d.f. of the current state con-
ditioned on all the data and measurements to that point, including the current
sensor measurement zT ; in short, it is our probabilistic best guess of the system
state at time T.

Each Bayes �lter recursion is a two step process. In the �rst prediction

step, the control measurement uT is incorporated, and an intermediate belief
bel(xT ) = f(xT |z1:T−1, u1:T ), conditioned only on all past data and the current
control measurement, is calculated. This intermediate belief step generally in-
creases the uncertainty in the state estimate; the previous belief is convolved
(essentially smeared) by the transition p.d.f.. The second step of the Bayes �lter
algorithm multiplies bel(xT ) by the likelihood of xT after the measurement zT ,
so this step generally reduces the uncertainty of bel(xT ).

In the EKF, we begin by assuming that the prior bel(x0) is a Gaussian. The
state transition probability is assumed to be governed by a nonlinear function
of xt−1, plus additive Gaussian noise. Equation 1 is replaced by:

xt = g(ut, xt−1) + εt. (3)

The sensor measurement probability is assumed to be governed by a non-
linear function of xt, plus additive Gaussian noise. So equation 2 is replaced
by

zt = h(xt) + δt. (4)

The trick to the EKF is that the functions g and h are replaced by their
�rst-order (linear) Taylor expansions on every prediction and update step. This
keeps the posterior belief, bel(xt), Gaussian at each step.

Calculating bel(xt)

Think of the transition function g(ut, xt−1) as though ut were a constant: de�ne
g(ut,xt−1) ≡ gut

(xt−1). The function gut
maps RN to RN , where N is the
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dimension of the state space, and therefore its Jacobian (derivative) at a (state)
point x0 is an NxN matrix, de�ned by:

[Gt|x0
]ij = [

δ(gut)j
δxi

∣∣∣∣
x0

]; (5)

i.e., the derivative matrix consists of gradient vectors of each component of the
vector function gut

arranged in columns.
In the equation 3, the state xt is given by the function gut

(xt−1) plus a noise
term εt. In order to de�ne a Taylor expansion for the estimate, we must choose a
representative point xt−1 ≡ x0 in the domain of bel(xt−1) to expand the function
gut around. This point should be central to the support of bel(xt−1), since that
represents our best knowledge about the state at time t−1. Since the prior belief
bel(xt−1) is assumed to be Gaussian, de�ned as bel(xt−1) ∼ N(µt−1,Σt−1), we
take the mean µt−1 to be the representative point for the Taylor expansion. We
therefore approximate gut

by the linear function

gut
(xt−1) ≈ gut

(µt−1) + Gt|µt−1
· (xt−1 − µt−1),

where Gt is the NxN matrix given in equation 5. This should be a close
approximation to gut

over the domain of bel(xt−1) in order for the EKF to give
good results.

With this approximation, we get the Gaussian predicted belief

p(xt|ut, xt−1) ∝

exp(−1

2
(xt−[gut

(µt−1)+Gt|µt−1
·(xt−1−µt−1)])tR−1

t (xt−[gut
(µt−1)+Gt|µt−1

·(xt−1−µt−1)]),

where Rt is the covariance of the noise term εt (note that, although the above
equation looks pretty gruesome, the expression still has the basic Gaussian form:
exp(− 1

2 (x− µ)tR−1(x− µ))).
It follows from the Bayes �lter prediction step that

bel(xt) =

ˆ
p(xt|ut, xt−1) · bel(xt−1)dxt−1 ∝

ˆ
exp(−1

2
(xt−[gut

(µt−1)+Gt|µt−1
·(xt−1−µt−1)])tR−1

t (xt−[gut
(µt−1)+Gt|µt−1

·(xt−1−µt−1)])

·exp(−1

2
(xt−1 − µt−1)tΣ−1

t−1(xt−1 − µt−1))dxt−1.

This integrand, awful though it looks, is just the product of two multivariate
normal distributions. It can be calculated using the result of the Convolution
Theorem from the earlier writeup on Kalman �lters [2]. The Convolution The-
orem is restated here:
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f(x) =

ˆ
exp(−1

2
[(x−Ay−w)TR−1(x−Ay−w)+(y−µ)TΣ−1(y−µ)]dy

=⇒ f(x) ∼ N(Aµ+ w,AΣAT +R).

We apply the Convolution Theorem to the previous formula by set-
ting x = xt, y = xt−1, A = Gt|µt−1

, w = g(ut, µt−1)− Gt|µt−1
µt−1,

µ = µt−1, R = Rt, and Σ = Σt−1. We end up with

bel(xt) ∼ N(g(ut, µt−1), Gt|tµt−1
Σt−1 Gt|µt−1

+Rt). (6)

Thus bel(xt) is estimated as a Gaussian with mean µt = g(ut, µt−1),
and covariance Σt = Gt|tµt−1

Σt−1 Gt|µt−1
+Rt.

Calculating bel(xt)

Consider the function h(xt) in equation 4. This function maps points in the
state space RN to points in the sensor measurement space, RM . Therefore its
Jacobian at a point x0 in the state space will be an NxM matrix,

[Ht|x0 ]ij = [
δ(ht)j
δxi

∣∣∣∣
x0

],

i.e., the derivative matrix consists of the gradient vectors of each of the M
components of the vector function ht arranged in columns.

According to the de�nition of the update step for Bayes �lters,

bel(xt) ∝ p(zt|xt)bel(xt).

In equation 4, we replace h(xt) with its Taylor expansion around a represen-
tative point in the domain of xt. As before, this point should be central to the
support of our current best estimate of the state at time t, and so we select µt
as the expansion point. This gives a linear approximation

h(xt) ≈ h(µt) + Ht|µt
· (xt − µt), (7)

which should be veri�ed to be a good approximation in the neighborhood of
µt where the predicted belief bel(xt) is concentrated. Then bel(xt) = ηexp(−Jt),
with

Jt =
1

2
[(zt−[h(µt)+Ht|µt

·(xt−µt)])tQ−1
t (zt−[h(µt)+Ht|µt

·(xt−µt)])+(xt−µt)tΣ
−1

t (xt−µt).

Note that this is of the same form as the analogous expression in the linear
Kalman �lter, discussed in [2]:

Jt =
1

2
[(zt − Ctxt)TQ−1

t (zt − Ctxt) + (xt − µt)TΣ
−1

t (xt − µt)],
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with Ct replaced by the (constant) matrix Ht|µt
, and zt replaced by the

constant term zt−h(µt)+ Ht|µt
µt. Jt is therefore a quadratic in xt, and bel(xt)

is a Gaussian in xt. To �nd the mean of the Gaussian, we solve

δJt
δxt

= −Ht
tQ

−1
t (zt − h(µt)−Ht(xt − µt)) + Σ

−1

t (xt − µt) = 0

=⇒ Ht
tQ

−1
t (zt − h(µt)) = (Ht

tQ
−1
t Ht + Σ

−1
)(xt − µt),

where we denote Ht|µt
simply as Ht. Since

δ2Jt
δ2xt

= Σ−1 = Ht
tQ

−1
t Ht + Σ

−1
,

we have (as with the linear Kalman case) that

ΣtH
t
tQ

−1
t (zt − h(µt)) = (xt − µt).

Solving for xt gives

xt = µt + ΣtH
t
tQ

−1
t (zt − h(µt)).

This expresses the mean of bel(xt) as

µt = µt + ΣtH
t
tQ

−1
t (zt − h(µt)) = µt +Kt(zt − h(µt)),

where Kt = ΣtH
t
tQ

−1
t is the Kalman gain. Therefore we have

bel(xt) ∼ N(µt +Kt(zt − h(µt)), (H
t
tQ

−1
t Ht + Σ

−1
)−1),

but as in the linear case, replacing Ct by Ht, we can express the covariance Σt
as

Σt = (Ht
tQ

−1
t Ht + Σ

−1
)−1 = (I −KtHt)Σt.

The EKF prediction and update steps therefore proceed as for the linear
Kalman Filter, but at every step we must be able to calculate the values
g(ut, µt−1) and h(µt), and to evaluate their Jacobians Gt|µt−1

and Ht|µt
.

The EKF will fail if there are signi�cant nonlinearities in the function gut
(xt−1)

in the support of bel(xt−1), or in the function h(xt) in the support of bel(xt),
since the assumption that the true posterior beliefs are nearly Gaussian will
not hold. The EKF is not applicable to these problems; other Bayesian �lter
techniques (particle �ltering, for example) are able to handle this case.
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